Limited Growth Recovery after Drought-Induced Forest Dieback in Very Defoliated Trees of Two Pine Species
نویسندگان
چکیده
منابع مشابه
Limited Growth Recovery after Drought-Induced Forest Dieback in Very Defoliated Trees of Two Pine Species
Mediterranean pine forests display high resilience after extreme climatic events such as severe droughts. However, recent dry spells causing growth decline and triggering forest dieback challenge the capacity of some forests to recover following major disturbances. To describe how resilient the responses of forests to drought can be, we quantified growth dynamics in plantations of two pine spec...
متن کاملDrought stress, growth and nonstructural carbohydrate dynamics of pine trees in a semi-arid forest.
In trees exposed to prolonged drought, both carbon uptake (C source) and growth (C sink) typically decrease. This correlation raises two important questions: (i) to what degree is tree growth limited by C availability; and (ii) is growth limited by concurrent C storage (e.g., as nonstructural carbohydrates, NSC)? To test the relationships between drought, growth and C reserves, we monitored the...
متن کاملTwo Species of Endophytic Cladosporium in Pine Trees in Korea
During our studies on the diverse endophytic fungi resident on conifer needles, many species of Cladosporium previously unreported in Korea were encountered. In this paper, we report on two species of Cladosporium from the needles of pine trees (Pinus spp.). Based on analyses of internal transcribed spacer gene sequence, and cultural and micromorphological characteristics, they were identified ...
متن کاملCanopy recovery after drought dieback in holm-oak Mediterranean forests of Catalonia (NE Spain)
Climate change is likely to produce more frequent and longer droughts in the Mediterranean region, like that of 1994, which produced important changes in the Quercus ilex forests, with up to 76% of the trees showing complete canopy dieback. At the landscape level, a mosaic of responses to the drought was observed, linked to the distribution of lithological substrates. Damage to the dominant tre...
متن کاملWood anatomy and carbon-isotope discrimination support long-term hydraulic deterioration as a major cause of drought-induced dieback.
Hydraulic impairment due to xylem embolism and carbon starvation are the two proposed mechanisms explaining drought-induced forest dieback and tree death. Here, we evaluate the relative role played by these two mechanisms in the long-term by quantifying wood-anatomical traits (tracheid size and area of parenchyma rays) and estimating the intrinsic water-use efficiency (iWUE) from carbon isotopi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Plant Science
سال: 2016
ISSN: 1664-462X
DOI: 10.3389/fpls.2016.00418